Patterning via optical saturable transitions--fabrication and characterization.

نویسندگان

  • Precious Cantu
  • Trisha L Andrew
  • Rajesh Menon
چکیده

This protocol describes the fabrication and characterization of nanostructures using a novel nanolithographic technique called Patterning via Optical Saturable Transitions (POST). In this technique the chemical properties of organic photochromic molecules that undergo single-photon reactions are exploited, enabling rapid top-down nanopatterning over large areas at low light intensities, thereby, allowing for the circumvention of the far-field diffraction barrier.(4) Simple, cost-effective, high throughput and resolution alternatives to nanopatterning are being explored, such as, two-photon polymerization(5,6), beam pen lithography (BPL)(7), scanning electron beam lithography (SEBL), and focused ion beam (FIB) patterning. However, multi-photon approaches require high light intensities, which limit their potential for high throughput and offer low image contrast. Although, electron and ion beam lithographic processes offer increased resolution, the serial nature of the process is limited to slow writing speeds, which also prevents patterning of features over large areas. Beam-pen lithography is an approach towards parallel near-field optical lithography. However, the gap between the source of the beam and the surface of the photoresist needs to be controlled extremely precisely for good pattern uniformity and this is very challenging to accomplish for large arrays of beams. Patterning via Optical Saturable Transitions (POST) is an alternative optical nanopatterning technique for patterning sub-wavelength features(1-3). Since this technique uses single photons instead of electrons, it is extremely fast and does not require high light intensities(1-3), opening the door to massive parallelization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fabrication and Optical Characterization of Silicon Nanostructure Arrays by Laser Interference Lithography and Metal-Assisted Chemical Etching

In this paper metal-assisted chemical etching has been applied to pattern porous silicon regions and silicon nanohole arrays in submicron period simply by using positive photoresist as a mask layer. In order to define silicon nanostructures, Metal-assisted chemical etching (MaCE) was carried out with silver catalyst. Provided solution (or materiel) in combination with laser interference lithogr...

متن کامل

Fabrication and Optical Characterization of Zinc Oxide Nanoparticles Prepared via a Simple Sol-gel Method

In this research zinc oxide (ZnO) nano-crystalline powders were prepared by sol-gel method using zinc acetate. The ZnO nanoparticles were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet-visible (UV-Vis), Fourier transform infra-red (FT-IR) and energy dispersive X-ray (EDX) spectroscopy. The structure of nanoparticles was studied using XRD pattern. The c...

متن کامل

Patterning via optical-saturable transformations: A review and simple simulation model

Articles you may be interested in Thermally induced nonlinear optical absorption in metamaterial perfect absorbers Appl. Fabrication of transferrable, fully suspended silicon photonic crystal nanomembranes exhibiting vivid structural color and high-Q guided resonance Facile fabrication of scalable patterned nickel nanocone arrays for field emission applications Nanostructure and microripple for...

متن کامل

Waveguide saturable absorbers at 1.55 μm based on intraband transitions in GaN/AlN QDs.

We report on the design, fabrication and optical characterization of GaN/AlN quantum-dot-based waveguides for all-optical switching via intraband absorption saturation at 1.55 µm. The transmittance of the TM-polarized light increases with the incident optical power due to the saturation of the s-p(z) intraband absorption in the QDs. Single-mode waveguides with a ridge width of 2 µm and a length...

متن کامل

Fabrication and Characterization of Zinc Sulfide Nanoparticles and Nanocomposites Prepared via a Simple Chemical Precipitation Method

In this research zinc sulfide (ZnS) nanoparticles and nanocomposites powders were prepared by chemical precipitation method using zinc acetate and various sulfur sources. The ZnS nanoparticles were characterized by X-ray diffraction, scanning electron microscopy, ultraviolet-visible and fourier transform infra-red. The structure of nanoparticles was studied using X-ray diffraction pattern. The ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of visualized experiments : JoVE

دوره 94  شماره 

صفحات  -

تاریخ انتشار 2014